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Abstract  
 

Since the discovery of carbon nanotube (CNT), a great deal of groups pays more attention to it due to its unique 

properties. The theory of ballistic transport carbon nanotube field effect transistors (CNTFETs) is presented in the 

paper, and then a numerical model based on Newton-Raphson and linear approximation method for charge 

densities in CNTFET is proposed. The model could efficiently provide accurate solution to the self-consistent 

potential in a CNTFET, which is a function of parameters such as terminal voltages, CNT diameter, and Fermi 

level and so on. The model is simulated and the results show that compared with the piece-wise linear 

approximation, the numerical model in the paper is more accurate and efficient. 
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INTRODUCTION 

 
Since the discovery of carbon nanotube (CNT) by Iijima in 

1991 (McEuen, 2002), it has attracted more interests due to its 

unique electrical properties, such as reduced carrier scattering 

rate and high current carrying capability (Javey, 2003; Hichem, 

2011; Pennington, 2005). And nowadays, a great deal of 

theoretical and experimental work has gone into understanding 

CNTs (Peng et al., 2006). CNTs are hollow seamless cylinders 

composed of one or more layers of grapheme sheets (Paul, 

2007; Guo, 2007; Vitusecich, 2010). Depending on their 

chirality, they can be either semiconducting or metallic. 

Semiconducting CNT has been used in the high performance 

field effect transistor (FET) as the channel nanotube (Paul, 

2007).  
The electronic properties of CNTFET have been studied in 

theory and experiment (Peng et al., 2006). Ungersbǒck et al. 
(2003) simulated carrier transport in axial and lateral type 
CNTFETs and the simulation results show reasonable 
agreement with experimental data.  

Dang et al. (2006) provided experimental data in detail and 
gave some compact models of CNTFETs. Deng et al.  

 
 

 

 
 
 
 

 
(2006) presented a circuit-compatible model of CNTFETs 

which can be simulated using HSPICE. The model can be well 

used in both digital and logic circuits (Liu, 2007). In their 

theory or simulation, the self-consistent potential is just 

approximately estimated, and they will not be in good 

agreement with experimental data when CNT parameters 

change. In other words, the device performance is a function of 

CNT parameters, such as diameter and length. To improve the 

device performance, Hashempour and Lombardi (2006) 

proposed a piece-wise linear approximation for self-consistent 

potentials in CNTFETs based on the ballistic transport theory. 

It can well accurately simulate CNTFETs, but the error 

between actual and modeled charge densities is a function of 

varied CNTFET parameters, such as CNT diameter and gate 

bias.  
In order to effectively simplify the simulation of CNTFET, 

an accurate numerical model for charge density in CNTFETs is 
proposed in this paper based on ballistic transport theory 
(Dang, 2006; Hashempour and Lombardi, 2006; Rahman, 
2003). The self-consistent potential of CNTFET is an important 
element in determining device current. So the more accurate 
self-consistent voltage compute, the less the error is. There are 
some advantage 
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features in the proposed numerical model. Firstly, it provides a 
more accurate numerical model of charge density in CNTFETs. 
Next, it uses Newton-Raphson and linear approximation 
method to efficiently and accurately compute the self-
consistent voltage, and the result is more close to the actual. 
Lastly, the model can be used in general applications and be 
realized in HSPICE. 
 

 

Theory of ballistic CNTFET 
 
The drain current of CNTFET has been computed by means of the ballistic 
theory (Dang, 2006; Hashempour and Lombardi, 2006; Rahman, 2003; 
Grado-Caffaro, 2008) 
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where  q  is the electron charge, h is Planck’s constant, T ( E) is 

the trace of the transmission matrix and f ( E ) is the Fermi-Dirac 

occupation  factor;   E FS   , EFD  are the  Fermi levels of the 
source      

and drain respectively, and E FD = E Fs − qVDS , where VDS is 

the source-drain voltage.  
Considering the first band contribution to the drain current, the drain 

current ID can be formulated by 
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is the temperature, k is Boltzmann’s constant, and USCF is the self-consistent potential in the first band. 
 

 

 

 

 

From the  Equation (2), specifying VDS   and EFS  , the  drain ID   is just a 
function of the self-consistent potential. And 
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is a function of CNTFET terminal voltages, deduced capacitances and conducting band potential, 
that is, 
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and CG , CS , CD are   deduced  capacitance of gate, source  and 
 

drain, respectively. The mobile, source and drain charge densities 
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where   
1  denotes the       first  conducting  band potential. 
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is the carbon-carbon bond length, and 
     

 

      , where       
  

3π bVII  

b = 0.142nm , VII = 3eV represents the carbon-carbon bond energy. 
 

 

An accurate numerical model 
 

Hamidreza and Lombardi (2006) proposed a piece-wise linear model for 
Equations (4) to (6), however when the parameters change, such as CNT, 
diameter is smaller than 1 nm, the error is close to 10%, the model is not 
good enough to evaluate the self-consistent potential. Here, a numerical 
model combined Newton-Raphson method with linear approximation is 
proposed. The model can efficiently and accurately solve the Equation (3) 
by using mix methods, and the error is very low. Equation (3) can be 
rewritten by 
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The first step is to specify the initial self-consistent potential, such as U 

SCF
0
 = 0 , and if F (U SCF

0
 ) = 0 , the procedure is end with 
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The second step is to modify the initial self-consistent potential  
 

U 
0
 by U 

1
 = U 0   +  U 

0
 .  The increment U by 

 

SCF     SCF   SCF   SCF     SCF 
 

means of Newton-Raphson method can be represented by  
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Figure 1. Integral function with different parameters. 
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Actually, Equations (9) and (10) are hard to get the numerical integral. 
Here, an area approximation is used to estimate the numerical value 
instead of integral. Figure 1 is the integral function of Equation 9 with 
different parameters. Their difference is just that the maximum value of 
the function in the left falls in the origin and in the right falls in other 
point. From Figure 1, it is known that the numerical integral of the 
Equation (9) is just the approximative triangle’s area. And for Equation 9, 
the area can be represented by 
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where a is the width of the triangle, and b is the maximum value of the 

function. And b can be evaluated by 
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Figure 2. Graphic F (USCF ) . 
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where  k1 and  k2 are the function of ε  as        
 

k   1 − 2 ε +1 − 4 ε           (17)    
 

1   =   2 ε                  
 

k 2 
 
= 

1 − 2 ε − 1 − 4 ε           
(18) 

 

  2 ε 
               

 

                     
 

From  Equations (11) to (18),   d N 1    can  be  approximately 
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By Newton-Raphson method, the    third step is to calculate 
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And when  F (U SCF ) is smaller than ξ , the  iteration ends with 
k  1 

U U  
SCF SCF . 

 

RESULTS AND DISCUSSION 

 

Here, the aforementioned numerical model will be simu-lated, 
and Hashempour and Lombardi (2006) proposal that a piece-
wise linear model will also be modeled just to be compared 
with our model about performance. The simulation parameters 
are set as follows; the temperature  

is  300  K, CNT diameter is d = 1.4246nm ,   the source 

Fermi level EF is  set to −0.5eV , andVG  = 0.8V , 
  S   

VDS = 0.8V , 1 = 0.45 / d eV . From  [17], α G , α S ,αD 

are0.87, 0.097, 0.033, respectively, and Ctot is 90 pF. Firstly, 

the graphic method is used to solve Equation 7. Figure 2 shows  

that the function F (USCF ) varies with USCF , and the 

answer of Equation 7 is the point where  

F (USCF )  intersect with F = 0 , as red circle in Figure 2. 
By using the graphic method, a close to actual answer 

could be  gotten  whose  error is  lower than10
−6

 , but  it 

spends more time to get the answer, and the integral also needs more  

computer time. Figures 3  and 4 show the simulation results where ‘N-R’ 

and ’P-W- L’ represent the  
Newton-Raphson method and piece-wise linear method,  
respectively. The relative error is the self-consistent potentials 
gotten from above methods compare with one 
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Figure 3. The relative error with different source-drain voltage.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The relative error with different CNT diameters. 

 

 

from graphic method based on the same parameters. In Figure 
3, the relative error of N-L method is close to zero whatever the 
source-drain voltage varies. However, the relative error of P-
W-L method varies as the source-drain voltage changes and 

when VDS = −0.8V , the relative error is 

 
 

 

top to 19.5%. In Figure 4, when CNT diameter is ranging from 
0.4 to 3 nm, the relative error of N-L method is lower 

than 0.2 ×10
−

 
4

 , while the relative error of P-W-L method 

almost achieves to 0.0017, which is remarkable bigger than N-
L method’s. When CNT diameter belongs to the 



 
 
 

 

range from 1 to 2 nm, the relative error of P-W-L method is 
lower than 0.001. From Figures 3 and 4, it can be concluded 

that the self-consistent potential is more accurate and efficient 
by using N-L method than by using P-W-L method. 
 
 

 

Conclusion 

 

In the paper, the theory of ballistic transport in CNTFETs is 
introduced and the charge density model is represented. In 
order to get the more accurate self-con-sistent potential 
efficiently, a numerical model is proposed by combining 
Newton-Raphson method with area approxi-mation and is 
simulated. From simulation result, it indicates that the 
numerical model can accurately and efficiently evaluate the 
self-consistent potential of CNTFETs. With the development of 
EDA technology, the numerical model can be realized by using 

HSPICE. 
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