Analysis of proximate composition and mineral nutrients of three leafy vegetables commonly consumed in Lagos, Nigeria

Hodson R. E, Aina E. J., Myneppali G., Sridhar H. and Gina Emerole

Lagos State University, Ojo Campus P.M.B.0001, Ojo, Lagos, Nigeria.

Abstract

Analysis of proximate composition and mineral nutrients of three commonly consumed vegetables Amaranthus cruentus, Celusia argenta and Corchorus olitorius leaves was carried out using standard methods of food analysis. The mean leaves moisture content is 23.57, 15.58 and 30.90% respectively for A. cruentus, C. argenta and C. olitorius. The vegetables have high ash content ranging from 21.30 to 32.36% which is within the range reported in some Nigerian leafy vegetables. The mean protein, carbohydrate and crude fibre content are: 12.66, 29.41, 7.83%; 9.35, 32.84, 11.70%; 11.24, 31.34, 6.6% respectively for A. cruentus, C. argenta and C. olitorius. All the studied vegetables have low fat content A. cruentus (0.45%), C. argenta (0.21%), C. olitorius (0.32%). The leaves have energy values of 177.55 cal/100 g for C. olitorius followed by A. cruentus with energy value of 176.67 cal/100 g and C. argenta having the least energy value of (174.93 cal/100g) of food. The vegetables are all good sources of calcium, iron and zinc.

Keywords: Leafy vegetables, Amaranthus cruentus, Celusia argenta, Corchorus olitorius, nutritive minerals.

INTRODUCTION

Vegetables are the fresh and edible portions of herbaceous plants, which can be eaten raw or cooked Fayemi (1999), Dhellot et al (2006). They contain valuable food ingredients which can be successfully utilized to build up and repair the body.

Vegetables are valuable in maintaining alkaline reserve of the body. They are valued mainly for their high carbohydrate, vitamin and mineral contents. Vegetables may be edible roots, stems, leaves, fruits or seed. Each group contributes to diet in its own way Robinson (1990). Amaranthus hybridus, Celusia argenta and corchorus are popular edible vegetables in Nigeria. Corchorus octorius is usually recommended for pregnant women and nursing mother because it is believed to be rich in iron Oyedele et al (2006).

Vegetables contain both essential and toxic elements over a wide range of concentrations, Ajewole (1999). The concentration of these elements is a function of the concentrations in the soil in which the vegetable is planted. Leafy vegetables are regular ingredient in the diet of the average Nigeria with their level of consumption; they can provide appreciable amounts of nutritive minerals Ajewole (1999).

Most developing countries depend on starch-based food as the main staple food for the supply of both energy and protein. This accounts in part for protein deficiency which prevails among the populace as recognized by Food and Agricultural Organization Ladeji et al. (1995). In Nigeria, A. hybridus leaves combined with condiments are used to prepare soup Oke, (1983); Mepha et al. (2007). In Central African, their leaves are eaten as spinach or green vegetables Dhellot et al., (2006). These leaves boiled and mixed with a groundnut sauce are eaten as salad in West and Southern Africa Oliveria and DeCarvalho (1975); Martin and Telek (1979). Amaranthus hybridus leaves have been shown to contain large amount of squalene, a compound that has both health and industrial benefits (Rao and Newmark (1998); Smith (2000); He and Corke, (2003).

In Nigeria, as in most other tropical countries of Africa where the daily diet is dominated by starchy staple foods, vegetables are the cheapest and most readily available sources of important proteins, vitamins minerals and essential amino acids (Okafor 1983; Thompson and Kelly,
Vegetables also act as buffering agents for acidic substances produced during the digestion process. (Thompson and Kelly 1990). Several works reporting compositional evaluation and functional properties of various types of edible wild plants in use in developing countries abound in the scientific literature (Lockeett et al., 2000; Faruq et al., 2002; Akindahunsi and Salawu, 2005; Edeoga et al., 2006; Hassan and Umar, 2006; Ekop, 2007). But much still needs to be done on the proximate analysis and mineral composition of edible leafy vegetables grown in Nigeria.

It is a common tradition in Lagos, Nigeria to cultivate vegetables along roadside due to limited arable farmland, high population and easy accessibility to the consumers. This work is therefore aimed at evaluating the proximate composition (moisture content, ash, crude fibre, protein, fat and carbohydrate) and mineral nutrient (calcium, iron and zinc) of *Amaranthus cruentus*, *C. argenta* and *C. olitorius* planted along roadside with a view to compare the results obtained with those planted on arable farmland in other parts of the country.

MATERIALS AND METHODS

Sample collection and treatment

Three commonly consumed leafy vegetable (*A. cruentus* (Tete), *C. argenta* (Soko) and *C. olitorius* (Ewedu) were collected from three different planting locations along roadside farmlands in Ojo Local Government Area of Lagos State (Figure 1). The samples were collected between the months of July and August 2005. The leaves were detached from the stalk. Part of the detached leaves was used for moisture content determination. The remaining leaves were rinsed with deionized water and sun dried for 5 days on a clean paper with constant turning over to avert fungal growth (Fasakin, 2004). The sun dried sample was ground into fine powder using dried pestle and mortal and sieved through 2.0 mm mesh prior to analysis (Fasakin, 2004). Proximate analysis (moisture content, ash, crude fibre, protein and fat) were determined using standard method of AOAC (1997). Carbohydrate was calculated by difference. Food energy calculation was derived by multiplying the percentage of crude protein and carbohydrate by 4.1 and crude fat by 9.3 (Khali and Saleemullah, 2004). The nutritive elements (Ca, Fe and Zn) content of the leaves were determined by wet digestion and analysed using Buck 210VGS scientific model of Atomic Absorption spectrophotometer (Awofolu, 2005). Appropriate quality assurance procedures and precautions were carried out to ensure re-
Table 1. Statistical Measurement of proximate concentration (%) of different vegetables.

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>moisture</th>
<th>Protein</th>
<th>Crude fibre</th>
<th>CHO</th>
<th>Fat</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soko</td>
<td>Mean ± S.D</td>
<td>15.60 ± 1.00</td>
<td>9.40 ± 0.90</td>
<td>11.70 ± 0.80</td>
<td>32.80 ± 1.70</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>14.70 - 16.70</td>
<td>8.80 - 10.40</td>
<td>10.70 - 12.40</td>
<td>31.10 - 34.30</td>
<td>0.020 - 0.021</td>
</tr>
<tr>
<td>Tete</td>
<td>Mean ± S.D</td>
<td>23.60 ± 4.10</td>
<td>12.70 ± 1.40</td>
<td>7.80 ± 1.80</td>
<td>29.40 ± 1.40</td>
<td>0.45 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>19.00 - 27.00</td>
<td>11.40 - 14.10</td>
<td>6.40 - 10.00</td>
<td>28.50 - 31.00</td>
<td>0.041 - 0.046</td>
</tr>
<tr>
<td>Ewedu</td>
<td>Mean ± S.D</td>
<td>30.90 ± 1.30</td>
<td>11.20 ± 0.30</td>
<td>6.70 ± 1.40</td>
<td>31.30 ± 1.50</td>
<td>0.32 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>29.20 - 36.10</td>
<td>11.20 - 12.30</td>
<td>5.40 - 8.10</td>
<td>30.40 - 33.0</td>
<td>0.030 - 0.032</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

The results of the proximate analysis are represented in Tables 1, Figures 2 and 3 while that of the nutritive materials represented in Table 2 and Figure 4.

The mean moisture content of the analyzed vegetables as presented in Figure 2: showed *A. cruentus*, *C. argenta* and *C. olitorius* to contain 23.57, 15.58 and 30.90% respectively. These values are lower than those reported earlier for some Nigeria green vegetables (Akindahunsi
Table 2. Statistical Measurement of Mineral elements concentration (mg/g) of different vegetables.

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Ca</th>
<th>Fe</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soko</td>
<td>Mean ± S.D</td>
<td>27.80 ± 1.30</td>
<td>0.39 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>26.30 - 28.70</td>
<td>0.36 - 0.43</td>
</tr>
<tr>
<td>Tete</td>
<td>Mean ± S.D</td>
<td>27.90 ± 5.00</td>
<td>0.60 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>24.94 - 33.70</td>
<td>0.59 - 0.60</td>
</tr>
<tr>
<td>Ewedu</td>
<td>Mean ± S.D</td>
<td>23.40 ± 6.70</td>
<td>0.47 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>19.30 - 31.00</td>
<td>0.36 - 0.54</td>
</tr>
</tbody>
</table>

Figure 4. Mean concentration (mg/g) of nutritive metals of different vegetables from different locations.

and Salawu, 2005), and a significant difference in the moisture contents was observed in vegetables collected from the various locations. For Ash content of *C. olitorius* (21.20%) is comparable to the leaves of *Talinum triangulare* (20.05%), Ilon and Bassir (1980); Ladan et al. (1996), but higher than the values reported for *Ipomeabatatas* (11.10%), *Vernonia colorate* (15.86%) and *Morin-ga oleifera* (15.09%), Lockett et al. (2000); Antia et al. (2006) *Ocimum gratissium* (18.00%) and *Hibiscus esculentus* (8.00%), (Akindahunsi and Salawu, 2005) (Table 1). The ash content of *A. cruentus*, (26.29%) and *C.argenta* (32.36%) is much higher than all the above re-ported vegetables.

Adequate intake of dietary fibre can lower the serum cholesterol level, risk of coronary heart disease, hyperten-sion, constipation, diabetes, colon and breast cancer (Ishida et al., 2000; Rao and Newmark, 1998). The crude fibre of *C. olitorius* (6.66%) is similar to the report given by Akindahunsi and Salawu, (2005), that of *A. cruentus*, (7.83%) is greater than *C. olitorius* and *C. argenta* (11.70%) is higher than *Amaranthus hybridus* (8.61%) reported by Akubugwo et al. (2007).

The crude protein content of *A. cruentus*, *C. argenta* and *C. olitorius* (12.66%, 9.35%, and 11.24%) (Table 1) respectively is higher than protein content of *Momordica foecide* (4.6%) leaves consumed in Nigeria and Swazi-land, Ogle and Grivetti, (1985); Isong et al. (1999); Has-san and Umar (2006), but lower than those of *I. batatas* (24.85% DW), *Amaranthus candatus* (20.5% DW), *Piper guineeses* (29.78%) and *T. triangulare* (31.0%), Etuk et al. (1998); Akindahunsi and Salawa (2005); Antia et al. (2006).
According to Pearson (1976), plant food that provides more than 12% of its caloric value from protein is considered a good source of protein. Therefore, A. cruentus leaves meet this requirement. Furthermore, adults, children, pregnant and lactating mothers require 34 - 56, 13 - 19 and 17 - 71 g of protein daily respectively (FND, 2002).

The carbohydrate content of A. cruentus, (29.41%), C. argenta (32.84%) and C. olitorius (31.34%) is comparable to 20 and 23.7% reported for Senna obtusifolia, Amaranthus incurvatus leaves respectively (Faruq et al., 2002; Hassan and Umar, 2006). However, lower than reported values for Corchorusindicus (75.0%) and sweet potatoes leaves (82.8%) (Asibey-Berko and Tayie, 1999). The re-commended carbohydrate dietary allowance values for children, adults, pregnant and lactating mothers are 130, 130, 175 and 210 g respectively (FND, 2002).

A. cruentus, C. argenta and C. olitorius leaves are poor sources of lipid. The crude oil contents of 0.45, 0.21 and 0.32% respectively are low compared to reported values (6.3 - 27.0%) in some vegetables consumed in West Africa (Ifon and Bassir, 1980; Sena et al., 1998).

C. olitorius leaves has energy values of 177.55 cal followed by A. cruentus with energy value of 176.67 cal and C. argenta having the least energy value of 174.93 calories per 100 g food. The crude fat analysis showed that vegetables are deficient in fats and this makes them good for health. ANOVA was used to analyse the results obtained from different locations. At 95% confidence level, there is a statically difference in the moisture content, crude fibre, fat and ash contents of the investigated vegetables collected from the various locations.

Vegetables are good sources of fiber, which lowers the body cholesterol level, consequently decreases the risk of cardiovascular diseases. It is required that vegetables should be used frequently as they are good for health and provide most of the essential nutrients for normal body functions when consumed in appropriate combination.

The nutritive metals basically calcium, iron and zinc were determined in the vegetables. The concentration of calcium is in the order of A. cruentus (27.9mg/g), C. argenta (27.7mg/g) and C. olitorius (23.3mg/g) (Table 2). Calcium is good for growth and maintenance of bones, teeth and muscles (Dosunmu, 1997; Turan et al., 2003), therefore these vegetables could provide veritable sources of calcium. The A. cruentus, C. argenta and C. olitorius leaves have iron and zinc with mean concentration of 0.6 and 0.08 mg/g, 0.39 and 0.09 mg/g and 0.47 and 0.05 mg/g respectively. Minerals are important for vital body functions such as acid base and water balance. Calcium and phosphorus are the minerals present in the largest quantity in the structure of the body and the bones. Iron is an important constituent of hemooglobin. Vegetables contribute these minerals and enhance their availability in daily life. These vegetables can supplement the daily requirements of Ca, Fe and Zn which have been put by (FAO/WHO 2001) at (260 mg/day), (0.425 mg/g) and zinc (0.099 mg/g) respectively (Weigert, 1991).

Conclusion

From this research it is shown that vegetables are nutritious foods that provide sufficient amount of nutrients needed for normal body function, maintenance and reproduction. It was found that nutrient compositions in all the selected vegetables were different.

Vegetables are poor sources of fat that make them good food for obese people. They are good source of fibre and can decrease the concentration of high cholesterol level in body. Comparing the mineral content with recommended dietary allowance, it was showed that the vegetables leaves are good sources of calcium, iron and zinc.

ACKNOWLEDGEMENT

We are grateful to Mr. Adekoya, M.A. of Evans Medical Plc. for assisting in the analysis.

REFERENCES

