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ABSTRACT 

The world surrounding us is more over covered with plastics and we are in a “plastic 

era”. The bigger plastic materials, as the time moves, disintegrate into micro or nano 

particles may be as a result of radiations or weathering. These are termed as 

microplastics and nanoplastics. Technically these microparticles do not create a direct 

impact, instead they make their way to the food chain or rather a complex food chain. 

These can be through various steps ranging from filter feeding to adherence. They will 

start to accumulate, as the trophic level increases their accumulations also get 

increased. These trophic transfer is mainly through ingestion of smaller to higher 

organisms. Thus they create various damages and diseases to organisms in successive 

trophic levels. That can be ranging from respiratory disorders to endocrine or 

oncogenic issues. Not only in the marine world, the terrestrial world is also prone to 

these microplastics, either by airborne or through sewage water plants. Moreover in a 

developing or developed country, exposure to these tiny things is much more. The 

impacts are showing now and will entangle in the near future, unless this is not dealt 

as a serious issue to be considered. This article focuses on the classification, sources, 

exposure to food chain or food web, trophic concentrations, health issues, and 

remedies of microplastics. 

Keywords: Microplastics, Food chain, Aquatic ecosystem, Phytoplanktons, Health issues, Remedial 

measures. 

  

 

INTRODUCTION 

 
Nowadays plastics have gained their 

importance in our day to day life, even starting 

from the hook of our buttons to materials of big 

aircraft. Since we know plastic products are 

useful in many terms, that these are more 

convenient and cheaper. Moreover we are 

leading to a plastic era, in which along with the 

usefulness we need to face many negative 

effects also [Díaz-Torres ER et al., 2017; Ryan 

PG et al., 2014; Ryan PG, 2014; Eriksen M et 

al., 2013; Derraik JG, 2002].The formation of 

Microplastics or Nano plastics are quite tedious.  

 

They are formed by the fragmentation or UV 

irradiation of bigger plastics [Yousif E et al., 

2013; Gewert B et al., 2015; Song YK et al.,  

 

2013]. The negative impacts of these micro  

villains are screened recently, and tests reveal  

that these are more vulnerable for aquatic 

fishes and sea birds [Derraik JG, 2002]. The 

sizes of microplastics are less than 5 mm, thus 

they cause many negative impacts to mussels 

including in their circulatory system [Browne 

MA et al., 2008]. While we consider the size 

ranges of the microplastics, filter feeders and 

benthic organisms in the basal marine part are 

more affected. This needs to be validated 

further [ Thompson RC et al., 2004]. Recent 

studies suggest that, due to fishes feeding on 

fishes contaminated with plastics the 

microplastics are transferred across different 

trophic levels of the food chain [Eriksson C et 

al., 2003]. It will be necessary to elucidate how 

microplastics deplete the food chain and 

indirectly affect human beings [Barnes DK et 
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al., 2009]. Filter feeding of either plastic 

contaminated fishes or plastics which are 

mistaken to be as prey, are the direct or 

indirect exposure of microplastics to trophic 

level organisms in the food chain [Bos RP, 

2019]. Zooplanktons are more exposed 

towards indirect ingestion of microplastics 

[Botterell ZL et al., 2019] and that 

consumption of zooplankton, such as pelagic 

shellfish larvae (by larviphagy) is a common 

pathway in marine food webs. Because of 

characteristics of microplastics regarding size 

and shape, they can put a hand over prey-

predator interactions. These properties may 

alter the prey swimming efficiency and benthic 

filter feeders can easily ingest them much more 

effectively [Van Colen C et al., 2020]. 

Prochlorococcus is one of the main aquatic 

oxygen producers, which may produce 20% of 

it. But accumulation of microplastics will alter 

the oxygen synthesis of Prochlorococcus and 

several other microalgaes [Tetu SG et al., 

2019; Liu G et al., 2019]. The impacts of 

microplastics in terrestrial ecosystems remain 

unexplored much despite various reported 

effects on aquatic organisms [de Souza 

Machado AA et al., 2019]. The growth of 

Earthworms also gets altered due to 

accumulation of microplastics [Boots B et al., 

2019] and that may affect the soil food chain 

or detritus food chain. There is a presence of 

microplastics in the faecal matter of humans 

[Schwabl P et al., 2019] and studies say that 

humans usually consume microplastics through 

the channel of sea foods [Korez S et al., 2019; 

Cho Y et al., 2019; Li J et al., 2019; Li J et al., 

2020; Miller E et al., 2019] and through 

contaminated water [Cox KD et al., 2019; 

Kniggendorf AK et al., 2019, Panno SV et al., 

2019; Welle F et al., 2018; Mason SA et al., 

2018; Besseling E et al., 2013; Huang Q et al., 

2020], etc. This writing mainly focuses on the 

impacts of microplastics within the 

phenomenon, food chain interactions, health 

issues caused by them and solutions to reduce 

microplastics and nanoplastics. 

 

MICROPLASTICS: CLASSIFICATION AND 
SOURCES 

 
Microplastics are fragments of plastics that may 

pollute the environment [Frias J et al., 2018]. 

According to the U.S. National Oceanic and 

Atmospheric Administration (NOAA), 

microplastics may have a size range around 5 

mm. Through the worlds of cosmetics, 

medicines, automobiles etc, microplastics may 

enter the ecosystems [Arthur C et al., 2008; 

Collignon A et al., 2014]. 

 

They are generally classified into Primary and 

Secondary microplastics respectively (Table 1). 

Apart from these two, nanoplastics and 

microplastics produced by dust emission during 

industrial wear and tear were also reported. 

 

 

Table 1. Classification of microplastics as primary and secondary microplastics with references. 

 

Regarding the sources of microplastics, they can 

be derived from the cloth industry, cosmetics, 

medicinal fields, automobile industry, production of 

single-use items, etc (Figure 1). 

                           

                                                
                                       

                        Figure 1. Sources and entry of microplastics to aquatic and terrestrial systems. 

Primary microplastics Secondary microplastics 

Microplastics, those may be produced as deliberately 

[Steinfeld B et al., 2015]. These are used in air blasting 

techniques and mechanisms [Cole M et al., 2011]. 

These are synthesised as a result of fragmentation of 

bigger plastics  [Masura J  et al., 2015]. 
 

They can be used as vectors in medicinal fields [Patel 

MM et al., 2009]. 
Many MNC tried to reduce microbead production. 

This fragmentation can be due to exposure to sunlight, 
photodegradation, chemo degradation, etc. 

Microbeads have a very long biodegradation period as 
normal plastics. 

Microplastics may get further degraded to form very 

small debris of 1.6 micrometers size [Conkle JL et al., 
2018]. 

https://en.wikipedia.org/wiki/National_Oceanic_and_Atmospheric_Administration
https://en.wikipedia.org/wiki/National_Oceanic_and_Atmospheric_Administration


 

Various researchers have postulated many 

definitions for the term “microplastics” [Gregory 

MR et al., 2003]. Recent studies using neuston 

nets with a practical lower limit of 333 

micrometers, microplastics are with size of 500 

micrometers and are generally traced from 

aquatic habitats than terrestrial [Fendall LS et 

al., 2009; Yonkos LT et al., 2014; Ng KL et al., 

2006]. For more specificity, this particular range 

of size alone is observed as ‘microplastics’ here 

and the larger particles like ‘virgin resin pellets’ 

are observed as ‘mesoplastics’ after [Collignon A 

et al., 2004]. 

 

Commonly plastics are of many types including 

Poly Ethylene (PE), Polyester (PES), Poly 

Ethylene Terephthalate (PET), Poly Etherimide 

(PEI) (Ultem), Polystyrene (PS), Poly Propylene 

(PP), Low-Density Poly Ethylene (LDPE) High-

Density Poly Ethylene (HDPE), vinyl resin 

(PVC), poly Vinylidene Chloride (PVDC) (Saran), 

Poly Carbonate (PC), polycarbonate/acrylonitrile 

butadiene styrene (PC/ABS), High-Impact Poly 

Styrene (HIPS), poly Amides (PA) (nylon), 

Acrylonitrile Butadiene Styrene (ABS), Poly 

Urethanes (PU), Urea–Formaldehyde (UF), 

Melamine Formaldehyde (MF), Poly Tetra Fluoro 

Ethylene (PTFE), and Poly Lactic Acid (PLA), etc. 

[Ghosh SK et al., 2013] (Figure 2). 

 

Figure 2. Numerous polymers of plastics types and their chemical structures (pc: Yung-Li Wang et al). 

 

MICROPLASTICS: JOURNEY THROUGH 
FOOD CHAIN OR FOOD WEB 
 
A food chain is an organic phenomenon that 

connects the organisms in a vertical or 

horizontal manner based on their feeding 

habits. This is organized based on different 

trophic levels. These trophic levels range from 

lower to higher. Unlike them, the food web is 

the interconnections between organisms but 

not in a linear fashion. On the food web, one 

trophic level organism can be connected to 

more than one organism in another trophic 

level. Though, food chains can be of aquatic or 

terrestrial and gracing or detritus. Recent 

studies suggest that in a food chain, 10% 

energy will transfer from lower to higher 

trophic level [Briand F et al., 1987; Lafferty KD 

et al., 2006]. 

 

MICROPLASTICS: EXPOSURE TO FOOD CHAIN 

OR FOOD WEB 

 

Microplastics are more exposed to the marine 

ecosystem and that through bioaccumulation 

mainly. It is the chemical and physical 

characters of microplastics that disrupt marine 

creatures [Borgå K et al., 2004; Rochman CM, 

2013]. One of the major things about 

microplastics is that they can be porous and 

can absorb pesticides, chemical fertilizers, 

polychlorinated biphenyls, etc. [Mato Y et al., 

2001]. This in turn may cause devastating 

effects to marine organisms and their food 

chain. 

 

Recent studies indicate that microplastics can 

be transferred through specific trophic levels in 

a food chain and they can be entered to the 

marine world through various mechanisms like 

ingestion, microbial assemblage, 

bioaccumulation, biomagnification, etc. Along 

with these, adherence, entanglement, etc. also 

pave a way for exposure of microplastics to 

the food chain (Figure 3). 

 

 

 



 
 

Figure 3. Microplastic exposure to food chain and food web, through ingestion, adherence,   microbial 

assemblage, entanglement, associated contaminants, bioaccumulation, biomagnification, etc. 

 

MICROPLASTICS: CONCENTRATION AT 

DIFFERENT TROPHIC LEVELS 

 

As microplastics accumulate on shorelines 56, 

coastal biotas are exposed to them. As in a 

food chain the initial trophic level will be 

producers (algal species or phytoplanktons). 

Trophic transfer is the major mechanism by 

which a plastic contaminated fish is being 

preyed by another [Tosetto L et al., 2017; 

Borgå K et al., 2004; Setälä O et al., 2016] 

Predator fish [Sundbæk KB et al., 2018]. Algal 

species are also prone to microplastics and 

they can be in the form of poly acrylic fibres or 

microbeads. Microbeads usually have a size 

range of 10-20 micrometers and poly acrylic 

fibres in 80-2300 micrometers [ Walkinshaw 

C et al., 2020] Algal species can aid in 

transferring microplastic contents through 

the food chain, eg: Fucus vesiculosus 

absorbs polystyrene microparticles which have 

a size range of 20-30 micrometers. This 

particular algae is getting ingested by Littorina 

littoria which is commonly called as common 

periwinkle and forming a trophic transfer across 

a food chain [Gutow L et al., 2016]. 

 

In terms of zooplanktons, they are also prone 

to microplastics since they live in the bottom 

line of the oceanic world, eg: Chaetognaths 

[Von Moos N et al., 2012]. Zooplanktons are 

the second trophic level organisms and primary 

consumers. 

 

Fishes are also studied for the ingestion of 

microplastics. They form the next trophic level 

of organisms. They are of pelagic and fishes in 

reefs especially, which are used as edible sea 

foods for humans. Microplastics are entangled 

in fishes mainly because they are feeding the 

other plastic contaminated other small fishes 

and zooplanktons. Most studies in fishes are 

conducted in the fishes like Silver carp, Nile 

tilapia, Crucian carp, and Common carp. By 

studying all these average of microplastic 

content per organism in them are 3.5-3.8 

(microplastic) MP/individual for Silver carp, 

2.2-2.5 MP/individual for Common carp, 1.0-

1.9 MP/individual for crucian carp, etc. Unlike 

the data about Nile tilapia are vaguer and 

researchers came to a conclusion that they 

may possess about 16% of 

microplastic/individual [Karbalaei S et al., 

2019; Grbić J et al., 2020]. Recent studies 

indicate that it is the morphological feature of 

microplastics that influences their vulnerability 

towards marine fishes. Specifically, it is the 

fiber structures of them which are more prone 

than the globular structure of microplastics. 

They are more entangled with the 

gastrointestinal tracts of these fishes. Their 

percentages ranges from 23-24% for Yellow 

tuna, 2.6-2.9% to Atlantic cod, 76.4-76.6% for 

Japanese anchovy, 23.1-23.4% for Pecific chub 

mackerel, 8.1-8.8% for Atlantic herring, 24.2-

24.6% for Jack and Horse mackerel, 9.1-10.0% 

for Skipjack tuna, 0.1-1.0% for Peruvian 

anchovy, etc. 

 

Rather in the case of shellfishes, a microplastic 

amount is detected as microplastics per gram 

of wet tissue. They form the next trophic level 

of organisms. Large numbers of studies were 

conducted in the family Mytilidae where the 

publications revealed that the aquatic as well 

as marine mussels generally contain about 0.1-

5.63 microplastics/gram w.w. But in Cupped 

oysters the range lies between 0.18-3.85 

MP/gram w.w and 0.9-2.6 MP/gram w.w for 

Japanese carpal shells [Li J et al., 2019]. While 

we compare oysters and mussels, studies 

suggest that in terms of microplastics >100 

micrometers oysters (32%) greater than 

mussels (11%). In terms of 20-50 micrometers 

of size range, mussel (37%) is greater than 

oysters (15%). But investigations show that 

both of them ingest microplastics in the range 

of 50-100 micrometers. 

 

The crustaceans are a more diversified group of 

marine organisms. They have a range of 

organisms including crabs, lobsters, shrimps, 

octopus, etc. Though the study on infestation 

of microplastics in them is studied less 

compared to others. In which the most studied 

form is Crangon crangon, called commonly as 

Brown shrimp. In this, 62%-64% of shrimps 

out of 165 shrimps were tested positive for 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/shorelines


containing microplastics which is about 0.55-

0.64 MP/gram w.w. [Jang M et al., 2020; Amin 

RM et al., 2020]. 

 

Thus from these organisms, microplastics are 

infested to higher trophic levels of organisms 

including big fishes and terrestrial predators 

because these higher trophic level organisms 

consume upon the lower ones. More than that, 

humans are exposed to microplastics not only 

through consumption of plastic contaminated 

sea foods ranging from algae to fishes, but also 

through various day to day plastic materials. 

These may range from plastic bottles, plastic 

bags, medicines, plastic spoons, hardware 

cases, many instrumental covers and many 

more [Wang YL et al., 2020]. Not only through 

water and terrain, humans are occupied with 

microplastics which are also sourced from air 

[Wang YL et al., 2020]. Along with these data 

which are published, microplastics are getting 

entered to each and every trophic level in a 

food chain. Yung-Li et al presented that the 

amount of microplastics will increase in terms 

of gram/w.w to all trophic levels in a food 

chain. The increase in the amount of 

microplastics in each trophic level organism is 

roughly given in Figure 4. 

 
 

Figure 4. Rough graph showing the inclining concentration of microplastics in ppt along with the increase 

in trophic levels of a particular food chain. As we could see the concentration of microplastics is increasing 

in each trophic level indicating bioaccumulation in microplastics.

 

MICROPLASTICS: HEALTH PROBLEMS TO 

ORGANISMS 

 

The recent studies on microplastics suggest 

that the organisms may get several health 

issues by ingesting them though the direct 

proofs or ambient evidence focusing this are 

very few. There are no direct results 

suggesting that the microplastic transverse 

through tissues of organisms especially marine 

varieties. But the human health issues due to 

microplastics are arising because of the plastic 

contaminated sea fishes, anchovies, algal 

species, oysters, etc. So there is a greater risk 

in human health also by consuming the plastic 

contaminated marine organisms. Microplastics 

may accumulate and cause blockage in the gut 

or several species of organisms. This may 

induce gradual inflammations to organs [Berry 

KL et al., Wang YL et al., 2020]. Accumulation 

of microplastics also causes disruptions and 

decline to the production of oxygen from algae 

and microalgae [Ward JE et al., 2019; Liu G et 

al., 2019] and have a disrupted effect in the 

consumption of zooplanktons [Liu LY et al., 

2020]. In crabs, they will accumulate and 

cause malformations and disrupted effects in 

gills, pancreas, stomach, etc. [Wang YL et al., 

2020]. They have a negative influence on fish 

tissue histological features also [Yong CQ et al., 

2020]. There are positive proofs indicating the 

lesser sperm velocity and egg production 

numbers in oysters due to microplastic 

accumulation [Sussarellu R et al., 2016; Wang 

F et al., 2020]. These studies reveal that the 

accumulation of microplastics causes negative 

implications in gastrointestinal tract and 

intestinal walls of humans [Meng Y et al., 

2020; Korez S et al., 2019]. Studies conducted 

in mice indicate that the negative impacts of 

microplastics may cause disruption in synthesis 

of amino acids, bile acids, liver lipids, etc. along 

with decline in mucus secretion and 

malfunctioning of microbiota in gut regions as 

well [Jin Y et al., 2019; Zhang R et al., 2019]. 

It was Brown et al who demonstrated that the 

accidental ingestion of microplastics may carry 

pollutants, chemicals, and additives through 

their journey to tissues and causes many 

negative impacts [Nam PN et al., 2019; Wang 

YL et al., 2020; Gallagher LG et al., 2015; Kern 

DG et al., 1998; Turcotte SE et al., 2013; 

Huang NC et al., 2011; Vianna NJ et al., 1981; 

Elliott P et al., 1997; Rochman CM et al., 2014; 

Barboza LG et al., 2018; Gardon T et al., 2018; 

Tallec K et al., 2018; Pitt JA et al., 2018; 

Martins A et al., 2018; Liu Z et al., 2019; Mato 

Y et al., 2001; Rochman CM et al., 2013; 

Andrady AL, 2011]. 

In humans, it is through the trophic transfer of 

microplastics it induces cytotoxicity by blocking 

efflux pumps in cells in the intestine and also 



enters to the gut and circulatory system. This 

induced cytotoxicity inturn activates oxidative 

stress via free radical generation initiated from 

Reactive Oxygen Species (ROS) [Andrady AL, 

2011; Qu M et al., 2018; Tang J et al., 2018]. 

This ROS in turn influences the antioxidants 

and causes negative impacts for DNA, 

carbohydrates, proteins and lipids. This may 

cause disruptions in the structure of genes, 

alteration in them, instability in them and 

finally leading to carcinogenesis [Birben E et 

al., 2012; Nita M et al., 2016]. 

Microplastics can cause negative effects in the 

synthesis and metabolism of amino acids. This 

is made possible by the increase in production 

of arginine and tyrosine. This may negatively 

alter the metabolism of bile acids via 

controlling the levels and production of 

Cholesterol 7a-hydroxylase, taurocholic acid, 

ATP-binding cassette, beta-muricholic acid, 

Abcb11 (member 11), and subfamily B [Jin Y et 

al., 2019]. By controlling the levels of Pyruvic 

acid, Cholesterol and triglyceride they affect 

the lipid metabolism of the liver [Lu L et al., 

2018]. In addition, the accumulation of 

microplastics induces toxicity in genes 104, 

alter gene expression 100, elicit immunological 

responses [Brandts I et al., 2018; Revel M et 

al., 2018], etc. This also causes the stimulation 

of proteins related to fibrosis, such as CTGF, 

PAI-1, and Collagen-1, and proteins related to 

autophagy, such as Beclin-1 and LC3-11 in 

kidney cells [Hsu YH et al., 2019]. 

 

MICROPLASTICS: THROUGH AIR 

 
These microplastics pave a way to enter into 

the atmosphere and even develop into a 

potential airborne contaminant [Xanthos D et 

al., 2017]. It is the workers in the synthetic 

textile industry, cosmetics industry and flock 

industry, who are more prone towards these 

air microplastic pollutants [ Tshikotshi V, 

2010]. They along with those who are 

breathing the air along with microplastics are 

exposed towards lung cancer [Wang YL et al., 

2020; Barboza LG et al., 2019; Margolin V, 

1998; Ghosh SK et al., 2013], stomach cancer, 

oesophagus cancer, intestinal cancer and many 

more lung diseases mainly. Microplastics 

Induce many negative variations for the 

endocrine system in various manner, initiate 

toxicity to neurons and induce reproductive 

abnormalities with many other after effects 

[Papadopoulou A et al., 2019]. In addition, 

microplastics absorb persistent organic 

pollutants (POPs) and many oceanic pesticides 

[Browne MA et al., 2013], because these 

materials or compounds are of high nature of 

affinity towards plastics or microplastics rather 

than normal water. 

 

MICROPLASTICS: IN WASTEWATER 

TREATMENT 
Waste treatment plants are one of the places 

where microplastic accumulations culminate 

[Dris R et al., 2015]. As we all know, 

wastewater treatment is done through three 

main steps. Out of which Primary treatment 

clears major amounts of microplastics, it is 

about 78%-98% [Dris R et al., 2015]. That is 

followed by secondary treatment, where 7%-

20% is removed [118]. Tertiary treatment has 

null functions in removing microplastics 

[Murphy F et al., 2016]. So, day by day a huge 

volume of the effluent carrying microplastics 

are removed to the marine ecosystem and they 

make a way for the entry of microplastics to 

the food chain [Talvitie J et al., 2017; 

Magnusson K et al., 2014]. Moreover we could 

say that the country with more wastewater 

treatment plants is one of the major sources 

for the expulsion of microplastics to the 

ecosystems [Prata JC, 2018]. 

In wastewater treatment plants, after most of 

the amount of microplastics released 

downstream to the marine or aquatic world 

some solid fractions may also entangle at last. 

These ambient solid fractions may pollute the 

terrestrial ecosystem as well. There are many 

potential strategic measures implemented by 

the government to reduce microplastic 

amounts. Out of which the most acclaimed and 

applauded one is the Source reduction method. 

Along with this many other methods were also 

postulated so as to reduce the amount of 

microplastics and their negative effects in the 

food chain [Prata JC, 2018].  

 

MICROPLASTICS: REDUCTIONS AND 
SOLUTIONS 
 

1. The world has postulated many strategic 

measures like the above given Source 

reduction method to reduce microplastic 

production and reuse them in an 

effective way as soon as possible. In 

turn by reducing plastics the release of 

microplastics will also get reduced. 

2. Out of which India also contributed 

some including the reduction and 

abandoning of fishing nets which were 

replaced by surfboards [Xanthos D et 

al., 2017] and banning of single use 

plastics were also amended from 2 

october, 2019 [Wang YL et al., 2020]. 

3. Netherlands made the microplastics to 

be reused as a constituent in 

construction of roads [Cordell D et al., 

2014]. 

4. The European Union also implemented 

many methods and strategies to reduce 

the use of single use plastics and 

eliminate them by 2021. 

5. Africa introduced Plastic reduction policy 

to prevent and reduce the increased use 

of microplastics. 

6. In the research held in the UK, some 

students made a remedy to reduce 

plastics and developed the use of red 



algal matter and skin of marine fishes to 

substitute plastics. 

7.  Recently many researches were held to 

develop and culture many strains of 

fungi and many strains of 

microorganisms that can degrade 

plastics like Polyvinyl chloride (PVC), 

PHB, etc. along with the production of 

several enzymes that can degrade PET. 

8. In Mexico, researchers developed edible 

plastics from the normal fruits of cactus, 

which in turn cause many health 

benefits. 

 

CONCLUSION 
 
The times are changing. We are now in the 

“Plastic era”, where the whole world is 

somewhat dependent on plastics. But overuse 

of them is causing not only plastic pollution but 

the production of new members like 

microplastics, nanoplastics, etc. These more 

fragmented and less biodegradable little 

things also cause abnormalities in our food 

chain, in that marine grazing food chain is 

more affected than others. The cosmetics 

world, medicinal industry, automobile parts, 

textile industry, wastewater treatment plants, 

etc. paved a way for the entry of micro plastics 

to air, water or terrain. They may 

bioaccumulate there and by various ways they 

enter the food chain. Thus they travel through 

different trophic levels of organisms through 

Trophic transfer and cause many devastating 

health issues to the successive animals. These 

are causing many carcinogenic and several 

other harmful effects in organisms ingested, 

mainly they will get accumulated in top 

predators as the recent studies reveal. Different 

countries in the world have formulated 

various methods to overcome these issues 

and we all are looking forward to this. So 

that the negative effects of microplastics could 

be eliminated and abandon them for 

restabilising the ecosystem balance.  
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