The virulence profiles and the antimicrobial drug resistance of *Escherichia coli* isolates from beef carcasses at an abattoir in Brazil

Shivalingsarj V. Desai and Mandyam C. Varadaraj

Campus Experimental de Dracena- UNESP, Brazil.

Abstract

Shiga toxin-producing *Escherichia coli* (STEC) is recognized worldwide as human pathogen. During the processing of carcasses, fecal contamination or transfer of bacteria from the animals' hide to carcasses can promote transmission of pathogenic *E. coli* to food supplies. A survey was performed to determine the sensibility profile to several antimicrobial drugs of STEC in carcasses obtained from an abattoir in Brazil between March 2008 and August 2009. A total of 120 STEC were isolated. All isolates were confirmed as being *E. coli* by their biochemical analysis and submitted to Polymerase Chain Reaction (PCR) for detection of *stx*, *eae* and *ehly* genes. The most frequent resistance was seen against cephalothin (84.0%), streptomycin (45.0%), nalidixic acid (42.0%) and tetracycline (20.0%). Multidrug resistance (MDR) to three or more antimicrobial agents was observed in 46 (38.3%) *E. coli* isolates. The presence of STEC and MDR strains among the isolates in the beef carcasses emphasizes the importance of proper handling to prevent carcass contamination.

Keywords: *Escherichia coli*, multi-drug resistance, shiga toxin-producing *E. coli*.

INTRODUCTION

Escherichia coli is part of the bacterial population of the cattle's gastrointestinal tract. In beef carcass processing, *E. coli* is regarded as an indicator of fecal contamination. Levels of *E. coli* associated with cattle carcasses can increase or decrease during processing according to factors such as the levels of fecal contamination of live cattle, efficiency of evisceration and hygienic practices in the abattoir. *E. coli* is regarded as a pathogen of major worldwide importance in commercially produced beef its presence can lead to significant economic loss (Bell, 1997).

Pathogenic *E. coli* are classified into pathotypes groups of strains that cause a common disease using common and remarkable assortments of virulence factors (Kaper et al., 2004). One such pathotype, the Shiga toxin-producing *E. coli* (STEC) is the causative agent of severe clinical syndromes in humans such as haemorrhagic colitis and haemolytic uremic syndrome (HUS).

However, the transmission of STEC can be foodborne, waterborne or from person to person (Nataro and Kaper, 1998).

Cattle, considered primary reservoirs of both O157 and non-O157 STEC bacteria (Bettelheim, 2000), frequently carry STEC without showing any pathological symptoms (Blanco et al., 1997). The full list of bacterial virulence determinants necessary for STEC's pathological effects is not known. However, Shiga like toxin is a key factor in pathogenesis (Acheson, 2000). Two types of Shiga like toxin, *stx1* and *stx2* (encoded by *stx1* and *stx2* genes), are associated with human disease. These toxins vary in their amino-acid sequence (Kaper et al., 1998) antigenicity, and in their activation and receptor specificity (Schmitt et al., 1999). *E. coli* acquire *stx* genes, and the subsequent ability to produce toxins, following infection with temperate bacteriophages (James et al., 2001). The ability of *E. coli* to adhere to intestinal epithelium is crucial in the colonization of the intestine, and therefore the
progression of disease in humans. The protein intimin, encoded by the eae gene, enables intimate attachment of E. coli to intestinal cells (Donnenberg et al., 1992), causing characteristic attaching/effacing lesions (Paton et al., 1998). This attachment also enables Shiga toxins to be injected into the epithelial cytoplasm through a type III secretion system (Kaper, 2004). Other virulence factors such as intimin (eae) and hemolysins (hly A) are thought to enhance pathogenicity, but are not required for strains to produce severe disease, including HUS (Bonnet et al., 1998; Acheson, 2000).

Although, antimicrobial therapy is an important tool for infection treatment, resistance to antimicrobials is a cause of great concern in veterinary medicine (Monroe and Polk, 2000). Indeed, a close association between the use of antimicrobial agents for the treatment of infections in animals and the observed levels of resistance exists (Chaslus-Dancia, 2001). From the human health perspective, the direct impact of antimicrobial resistance evolved from the use of antimicrobials in the treatment of animal infections, is not clear. Since the antimicrobials routinely used for the treatment of infections in humans are also used in animals for either therapy and prevention or as growth promotion factors, it is not easy to describe the relative contributions of animal derived resistant strains to human E. coli disease (Maynard et al., 2004). The use of antibiotics in animal agriculture has been a controversial issue due to the potential transfer of antibiotic resistance from animals to humans. This could have several public health implications that may cause treatment failure, including death and illness prolongation, as well as increase in the associated costs (Kelly et al., 2004). During the processing of the carcass, fecal contamination or transfer of bacteria from the animal’s hide to the carcass can facilitate transmission of pathogenic E. coli to food supplies (Bell, 1997; Barkocy-Gallagher et al., 2001). Outbreaks have been associated with consumption of STEC contaminated and under-cooked hamburgers, subsequent to both animal and foods (Erickson and Doyle, 2007).

In Brazil a high prevalence of STEC in stools of healthy cattle was found in the states of Sao Paulo (Irinio et al., 2005), Rio de Janeiro (Cerqueira et al., 1999), Rio Grande do Sul (Moreira et al., 2003; Timm et al., 2007) and Parana (PR) (Farah et al., 2007; Pigatto et al., 2008) and a prevalence of 1 - 2% of STEC in cases of diarrhea in humans was reported (Vaz et al., 2004, De Toni et al., 2009). The objective of this study was to determine the virulence profiles and the antimicrobial drug resistance of E. coli isolates from beef carcasses at an abattoir in Brazil.

MATERIALS AND METHODS

Carcass samples

Six hundred carcass samples were collected an abattoir in Sao Paulo State, in southwestern Brazil, between March 2008 and August 2009. Samples studied were from carcasses cattle raised at pastures. Sampling of 150 feedlot cattle was done on four different occasions, two in the rain season and two in the dry season. Each sample was obtained using a Specie- Sponge (3M- Brazil) moistened with 25 ml of Brilliant Green (BBL/Becton Dickins on) in a stomacher bag. Sponges were wrung out as much as possible within the bag and used to swab each area. Each carcass was followed along the processing and sampled at three different stages always at the same site of the rump, near the anus over an area of 10 × 30 cm, delineated by a sterile metal template, from the same half of each carcass. All samples were taken to the laboratory in an ice-cooled bag and kept for 12 h at room temperature.

Bacterial isolates

One hundred microliters of each sample was streaked on MacConkey agar plates (Oxoid Ltd) and incubated at 37°C for 24 h. Colonies showing E. coli characteristics were submitted to Gram staining and identified by standard biochemical tests; oxidase negative, indole positive, Simon's citrate negative, urease negative and hydrogen sulfide negative (Koneman et al., 1997). The isolates were serotyped for O157 using Latex Agglutination test kit (Oxoid, Basingstoke, UK). Negative strains were considered non-O157 strains.

Polymerase chain reaction (PCR) screening of samples

Bacterial strains, grown overnight in nutrient broth (Sigma Chemical Co.) at 37°C, were pelleted by centrifugation at 12, 000 g for 1 min, resuspended in 200 µl of sterile distilled water and lyzed by boiling for 10 min. Lysate was centrifuged as described above and 150 µl of the supernatants were used as DNA for the PCR (Wani et al., 2003) . A total of 120 E. coli isolates were subjected to PCR. stx 1, stx 2 and eae genes were detected using the primers and PCR conditions described by China et al. (1998).

Expression of E-Hly

Expression of enterohemolysin was determined based on the method described by Beutin et al. (1989). Plates were incubated at 37°C for 24 h and observed for hemolysis after 3 h (for expression of a -hemolysin) and 24 h (for E- Hly), respectively. The reference strains used in this assay were E. coli U4– 41 (positive control for a-hemolysin), E. coli 32511 (STEC O157: H7) (positive control for E-Hly), and E. coli K12 (negative control).

Susceptibility testing

Antimicrobial disk susceptibility tests were performed using the disk diffusion method by the National Committee for Clinical Laboratory Standards (NCCLS, 1999) . Ten antimicrobial agents were selected for the tests: cephalothin, streptomycin, nalidixic acid, tetracycline, ampicillin, amoxicillin/clavulanic acid, gentamicin, trimethoprim, ceftriaxone, amikacin. The antimicrobials used in this study were the same used by farmers in animal produce.

RESULTS AND DISCUSSION

All isolates, confirmed as being E. coli by their biochemical analysis, were submitted to PCR for the detection of sequences of virulence genes. From each MacConkey agar plate total six hundred E. coli strains
Table 1. Distribution of the E. coli isolates at three different stages of processing between March 2008 and August 2009.

<table>
<thead>
<tr>
<th>Carcass</th>
<th>Collection</th>
<th>Season</th>
<th>Stx genes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>Rainy</td>
<td></td>
<td>35/150</td>
<td></td>
</tr>
<tr>
<td>2°</td>
<td>Rainy</td>
<td></td>
<td>47/150</td>
<td></td>
</tr>
<tr>
<td>3°</td>
<td>Dry</td>
<td></td>
<td>17/150</td>
<td></td>
</tr>
<tr>
<td>4°</td>
<td>Dry</td>
<td></td>
<td>21/150</td>
<td>120/600</td>
</tr>
</tbody>
</table>

Figure 1. Antimicrobial resistance pattern of E. coli isolate. CFL — cephalothin, STR — streptomycin — NAL — nalidixic acid, TET — tetracycline; AMP — ampicillin, AMC— amoxicillin/clavulanic acid; GEN — gentamicin, TMP — trimethoprim, CRO — ceftriaxone, AMK — amikacin.

isolates the cattle carcasses 120 isolates carrying stx1, stx2 and eae genes (Table 1). Among 600 strains analyzed only three were enterohemolysin positive. These results were similar to Rigobelo et al. (2008) that analyzed 216 samples from bovine carcasses and all of the isolates were negative for eahy gene.

The isolates STEC during raining season were more than dry season, probably the presence of water increased the spread of bacteria STEC. Rogerie et al. (2001) reported lower post processing of nonO157 STEC prevalence (1.9%) on carcasses sampled during the summer in plants in France. Similarly, the non- O157 STEC prevalence on carcasses processed in Hong Kong was reported to be 1.7% (Leung et al., 2001), however, Arthur et al. (2002) reported higher level (54.0%) of contamination with non-O157 STEC in carcasses processed in the United States.

The hides and feces of animals presented for slaughter have shown to be major sources of pathogens in processing plants (Barkocy-Gallagher et al., 2001). It is not clear what proportion of non-O157 STEC bacteria detected in cattle feces or on beef carcasses is able to cause disease in humans. Gyles et al. (1998) defend the idea that all STEC bacteria could be pathogenic under

In the present study, the detected level of STEC strains (20%) did not match to those reported by others (Rogerie et al., 2001; Leung et al., 2001; Mora et al., 2005). To the best of our knowledge, we could not find data from Brazil for comparison. Only Rigobelo et al. (2006) report of STEC (1.25%) and Rigobelo et al. (2008) report (1.4%) of STEC. These differences were probably because of low hygienic conditions of abattoir where we collected the samples. Some authors have reported the detection of STEC strains in calves for dairy cattle (Irino et al., 2005), from diarrheic (Leomil et al., 2003) and from mastitic cattle (Lira et al., 2004) but none from abattoir samples. In all of them, the stx 2 gene has been predominantly found, and the non-O157 STEC strains detected. Only a small number of O157 STEC strains have been detected among bovine fecal samples 0.6% as reported by Irino et al. (2005), they did not express the stx gene. Interestingly, the O157: H7 strains isolated in Sao Paulo State from human infections, were all stx - producers (Vaz et al., 2004), predominantly presenting the stx 1 gene. For more than four decades it has been a common practice on farms to use antimicrobial agents for disease prevention and growth promotion of animals. Widespread use of antimicrobial agents, select for resistance enhancement and may have promoted the increasing frequency of STEC strain’s multidrug resistance in bovines. This could result in STEC population increases and perhaps greater shedding which could lead to higher contamination of animal food products with STEC (Zhao et al., 2001).

E. coli strains were tested against ten antimicrobial agents. The resistance pattern observed was: cephalothin (84.0%), streptomycin (45.0%) and nalidixic acid (42.0%) and less frequently to trimethoprim (9.0%); cephalothin (8.0%) and amikacin (6.0%) (Figure 1). Twenty-four percent of the isolates were sensitive to all the antibiotics tested. Multidrug resistance was seen in 38.4% of the isolates and resistance to 2 or 3 antibiotics was common (Figure 2). Khan et al. (2002) reported resistance to one or more antibiotics in 49.2% of STEC strains in India, with some strains exhibiting multidrug resistance.

Antimicrobial resistant bacteria from animals may colonize human population through the food chain; it is possible that resistant bacteria may be readily transferred to humans from animals used as food sources (Van den Bogard and Stobberingh, 2000).

We report here a high level (20%) of occurrence of STEC strains on beef carcasses during processing at an abattoir in Brazil suggesting poor hygienic conditions. E. coli isolates analyzed showed a high level of multidrug resistance.
REFERENCES

