Utilization of formalin and altered gravity-feed treating strategy in veterinary life systems analyzation and practicals

Sade Adeola Michael\(^1\), Ugbomeh Eugene\(^2\) and El-rufai Sanisu\(^3\)

\(^1\)Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Abuja, Nigeria.
\(^2\)Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja Nigeria.
\(^3\)Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Nigeria.

Abstract

Gravity feed embalming technique was used to preserve cadavers for teaching of gross anatomy and practicals. Six white Fulani cattle were used. The gravity feed technique was employed to embalm through the right common carotid artery. The right external jugular vein was used to drain blood from the vascular system concurrently. Complete embalming was achieved in about 10 h using an embalming fluid constituted of a combination of 10% formalin, phenol and glycerine. The technique demonstrated cost efficiency and reliability as there was minimal tissue and organ distortion.

Keywords: Gravity-feed technique, embalming, formalin, veterinary anatomy dissection

INTRODUCTION

Embalmimg is the art and science of preserving the body of an animal after death with the use of certain chemicals. This is done to forestall decomposition for long term preservation. The procedure has been practised in many cultures and is one of the earliest surgical procedures humanity ever undertook (Frederick and Strub, 1989). In some parts of the world, elements of the climate, such as extreme cold or dry heat, act as natural preservatives, creating corpses that do not decompose and maintain their form for great lengths of time.

Embalmimg has a very long and cross-cultural history, with many cultures giving the embalming processes great religious meanings (Ezugworie et al., 2009). The earliest chronicle of embalming is that which occurred in Egypt over 5,000 years ago. It was a religious practice which imbied the belief of resurrection through the preservation of bodies (Mayor, 2000). The second main epoch of embalming history is the period of the Renaissance in Europe, a period in which embalming techniques were primarily used to preserve the dead for purposes of dissection and study (Saeed et al., 2001). The third distinct period is the modern history, from 1861, the start of the American Civil War, to the present day. During the Civil War, embalming became more common, initially required by public transportation services for the purpose of effective delivery of corpses to their final resting places from the battlefields (Saeed et al., 2001). It became an invaluable means of maintaining corpses of prominent military officials, whose bodies might travel to a number of locations for memorial outfits. In these distinct periods, the methods of embalming varied considerably. However, it is interesting to note that modern embalming techniques are the result of accumulation of knowledge over decades, from researches, errors and inventions (Saeed et al., 2001; Ezugworie et al., 2009). The gravity feed embalming technique involves the use of gravity to perfuse a cadaver. In this technique, a container dispensing the embalming fluid is elevated above the body’s level. The fluid is slowly introduced over an extended period of time, often for several days. No drainage occurs and there is no separate cavity treatment of the internal organs (Ezugworie et al., 2009). This article describes a modification of this technique.
In more recent times, techniques of embalming have become a matter of necessity. The study of anatomy and the technique of dissection, for example, have necessitated some methods or materials that would allow carcasses to be studied for longer periods in warm as well as cold weather. The modern practice of embalming utilizes the so-called ‘arterial embalming’ technique (Ezugworie et al., 2009). This involves injecting an embalming fluid into the arterial system of a cadaver and utilizing the whole vascular system. Ideally, this method involves the use of a centrifugal embalming pump which is not readily available in Nigeria. This article outlines a modification of the gravity feed method of embalming that has proved efficient. It also discusses the prospects and consequences of the use of formalin as an embalming fluid in a bid to suggest safer and more efficient alternatives.

RESULTS AND DISCUSSION

Veterinary Anatomy is a basic subject in the study of Veterinary Medicine and related biomedical sciences (Korf et al., 2008). Animal dissection is an integral part in the learning of Veterinary Anatomy (Johnson, 2002). It is a central tool used for teaching anatomy in university veterinary medical schools as the students learn the basic constructional principles of the animal body by dissecting the cadaver. In recent times, the value of dissection has been a challenging subject of discussion in developing countries due to high costs and problems of shortness in time in some veterinary medical curricula. With the advent of new techniques and computers, alternative methods of teaching anatomy have come into existence. However, the gross anatomy dissection offers the unique possibility of learning through practical development of manual skills required for adequate comprehension of the subject matter.

In this demonstration, complete embalming took approximately 10 h per animal and completely embalmed cadavers were used for anatomy dissection which spanned through a period of approximately 10 months. This proved more efficient than the technique involving the use of gluteraldehyde which has been documented to be suitable for cadaver preservation for up to 6 weeks (Tolhurst and Hart, 1990). Though the composition of embalming fluid has been under continuous review for many years, the constituents used for this procedure were tailored towards proper tissue fixing, fungicidal and bactericidal activities. However, improved embalming fluid composition for anatomy dissection have been suggested (O’Sullivan and Mitchell, 1993) as concerns have recently been expressed about formaldehyde levels in dissecting rooms and embalming suites in anatomy departments.

The highly poisonous chemical, formalin, with attractive characteristics has long been debated in the field of embalming, with many choosing to expose themselves to an unknown degree of risk (Heimlich, 2008). The primary criticism of formalin fluid is associated with the inhalation of formaldehyde fumes which commonly causes mucosal irritation of the upper respiratory tract (Riedel, 1996), or formaldehyde absorption through the skin, which is known to cause skin irritation, eczema and in extreme cases can lead to allergic dermatitis or hives (Owen and Beck, 2001; Heimlich, 2008). With the eyes, exposure to formaldehyde vapour can cause reddening and burning sensations, accompanied by tear production (Bedino, 2004). Furthermore, prolonged exposure is suspected to be associated with cancers of the lung, nasopharynx, oropharynx and nasal passages (Hansen, 1996; Viegas et al., 2010). However, it is assumed that very good
ventilation, use of protective clothing such as laboratory coats, gloves and masks could reduce these known risks to a reasonable level.

Embalmimg by arterial injection is the most practised form of embalming for veterinary anatomical studies. It is fast and involves the use of a centrifugal embalming pump (Ajao et al., 2010). However, in developing countries like Nigeria where the required equipment is not readily available, an improvised modified gravity feed technique of embalming has proved efficient. This technique offers the advantage of ease of assembling of the apparatus to anatomists with limited resources. It is also much faster than the typical gravity feed system where drainage of blood and intestinal fluids is not done.

Conclusion

The modified gravity feed method of embalming has proved effective. The cadavers remained suitable for anatomy dissection practicals which spanned through a period of 10 months and even more. However, it is proposed that the results can be improved if the embalming fluid constituents are reconsidered as the commonly used concentration and quantity may not be suitable for some working environments.

REFERENCES

